Proteinase inhibitor from ginkgo seeds is a member of the plant nonspecific lipid transfer protein gene family.
نویسندگان
چکیده
A 9-kD proteinase inhibitor was isolated from the seeds of ginkgo (Ginkgo biloba) and purified to homogeneity. This protein was revealed to partial-noncompetitively inhibit the aspartic acid proteinase pepsin and the cysteine proteinase papain (inhibition constant = 10(-5)-10(-4) m). The cDNA of the inhibitor was revealed to contain a 357-bp open reading frame encoding a 119-amino acid protein with a potential signal peptide (27 residues), indicating that this protein is synthesized as a preprotein and secreted outside the cells. Semiquantitative reverse transcription-polymerase chain reaction revealed that this gene expresses only in seeds, not in stems, leaves, and roots, suggesting that the protein is involved in seed development and/or germination. The inhibitor showed about 40% sequence homology with type-I nonspecific lipid transfer protein (nsLTP1) from other plant species. Actually, this inhibitor exerted both lipid transfer activity and lipid-binding activity, while the protein did not show any antifungal and antibacterial activities. Furthermore, the site-directed mutagenesis study using a recombinant ginkgo nsLTP1 revealed that proline (Pro)-79 and phenylalanine-80 are important on phospholipid transfer activity and that Pro-79 and isoleucine-82 are essential for the binding activity toward cis-unsaturated fatty acids. On the other hand, the alpha-helical content of P79A and F80A mutants was significantly lower than that of the wild-type protein. It was noteworthy that the papain-inhibitory activity of P79A and F80A mutants was elevated twice as much as that of the wild-type protein. In summary, we concluded that Pro-79 plays a critical role in both the lipid transfer and binding activities of ginkgo nsLTP1.
منابع مشابه
In Vitro Antifungal Activity of a Radish (Raphanus sativus L.) Seed Protein Homologous to Nonspecific Lipid Transfer Proteins.
A basic 9-kD protein was purified from seeds of radish (Raphanus sativus L.). The 43 amino-terminal amino acids show extensive sequence identity with nonspecific lipid transfer proteins from other plant species. The radish seed nonspecific lipid transfer protein-like protein inhibits the growth of several fungi in vitro.
متن کاملProteins of circularly permuted sequence present within the same organism: the major serine proteinase inhibitor from Capsicum annuum seeds.
The major serine proteinase inhibitor from bell pepper (Capsicum annuum, paprika) seeds was isolated, characterized, and sequenced, and its disulfide bond topology was determined. PSI-1.2 is a 52-amino-acid-long, cysteine-rich polypeptide that inhibits both trypsin (K(i) = 4.6 x 10(-9) M) and chymotrypsin (K(i) = 1.1 x 10(-8) M) and is a circularly permuted member of the potato type II inhibito...
متن کاملPurification, characterization, and complete amino acid sequence of a trypsin inhibitor from amaranth (Amaranthus hypochondriacus) seeds.
A protein proteinase inhibitor was purified from a seed extract of amaranth (Amaranthus hypochondriacus) by precipitation with (NH4)2SO4, gel-filtration chromatography, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography. It is a 69-amino acid protein with a high content of valine, arginine, and glutamic acid, but lacking in methionine. The inhibitor has a rela...
متن کاملCabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family.
We have recently purified a protein (cryoprotectin) from the leaves of cold-acclimated cabbage (Brassica oleracea) to electrophoretic homogeneity, which protects thylakoids isolated from the leaves of nonacclimated spinach (Spinacia oleracea) from freeze-thaw damage. Sequencing of cryoprotectin showed the presence of at least three isoforms of WAX9 proteins, which belong to the class of nonspec...
متن کاملA potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins.
An antimicrobial protein of about 10 kD, called Ace-AMP1, was isolated from onion (Allium cepa L.) seeds. Based on the near-complete amino acid sequence of this protein, oligonucleotides were designed for polymerase chain reaction-based cloning of the corresponding cDNA. The mature protein is homologous to plant nonspecific lipid transfer proteins (nsLTPs), but it shares only 76% of the residue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 146 4 شماره
صفحات -
تاریخ انتشار 2008